MECH 40°

Mechanical Design Applications
Dr. M. K. O’Malley — Master Notes

Spring 2008
Dr. D. M. McStravick
Rice University



Design Considerations

Stress
Deflection
Strain
Stiffness
Stability

} Often the controlling factor

Stress and strain relationships can be studied
with Mohr’s circle



Detflection

When loads are applied, we have deflection

Depends on
o Type of loading
Tension
Compression
Bending
Torsion
o Cross-section of member
o Comparable to pushing on a spring

We can calculate the amount of beam deflection by
various methods



Superposition

Determine effects of individual loads separately and
add the results

Tables are useful — see A-9
May be applied if
o Each effect is linearly related to the load that produces it

o A load does not create a condition that affects the result of
another load

o Deformations resulting from any specific load are not large
enough to appreciably alter the geometric relations of the
parts of the structural system



Detflection

There are situations where the tables are insufficient
We can use energy-methods in these circumstances
Define strain energy
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Example — beam in bending

- My
|
002
U=|-—2dV
Y 2E
N 242
My,
J 2El
dV = dAdx
2
A

2EI°




Castigliano’s Theorem

Deflection at any point along a beam subjected to n loads may
be expressed as the partial derivative of the strain energy of
the structure WRT the load at that point

S = oU

i — 6_F,
We can derive the strain energy equations as we did for
bending

Then we take the partial derivative to determine the deflection
equation

Plug in load and solve!

If there is no load acting at the point of interest, add a dummy
load Q, work out equations, then set Q =0



Castigliano Example

Beam AB supports a uniformly
distributed load w. Determine the
deflection at A.

No load acting specifically at point Al
o Apply a dummy load Q

Substitute expressions for M, ¥xM/ 5%
Qas and Q, (=0)

We directed Q, downward and found 5%
A to be positive

o Defection is in same direction as Q,
(downward)
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Stability

Up until now, 2 primary concerns

~ o Strength of a structure

It's ability to support a specified load without

Material experiencing excessive stress

failure o Ability of a structure to support a specified
load without undergoing unacceptable
. deformations

Now, look at STABILITY of the structure

o It's ability to support a load without
undergoing a sudden change in configuration




Buckling

Buckling is a mode of failure that does not depend
on stress or strength, but rather on structural

stiffness
Examples:

P

Fig. 9.6 Twist-bend buckling of a Fig: 3. Buckling .ot
a column under a

deep, narrow beam. compressive load.



More buckling examples...

Fig. 9.8 Buckling and crumpling of the cylindrical walls
of a can subjected to compressive force.
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Fig. 9.9 Twist-bend buckling of a shaft in torsion.



Buckling

The most common problem involving

buckling

IS the design of columns

o Compression members
The analysis of an element in buckling

Involves

establishing a differential equation(s)

for beam deformation and finding the solution

to the O
are stab

Euler so

DE, then determining which solutions
e

ved this problem for columns



Euler Column Formula
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Buckling

Geometry Is crucial to correct analysis
o Euler —“long” columns

o Johnson — “intermediate” length columns
o Determine difference by slenderness ratio

The point is that a designer must be alert to
the possibility of buckling

A structure must not only be strong enough,
but must also be sufficiently rigid



‘ Buckling Stress vs. Slenderness Ratio
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Euler column buckling curves illustrated for two values of E and S, .



‘]ohnson Equation for Buckling
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Solving buckling problems

Find Euler-Johnson tangent point with 5

For L./p < tangent point (“intermediate”), use Johnson’s Equation:

S
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For L./p > tangent point (*long”), use Euler's equation: g -

2
[ e)
For L/p <10 (“short”), S, © S, P

If length is unknown, predict whether it is “long” or “intermediate”, use the
appropriate equation, then check using the Euler-Johnson tangent point once
you have a numerical solution for the critical strength



Special Buckling Cases

Buckling in very long Pipe
5 _cr’El
crit Lz

Note Pcrit is inversely related to length squared
A tiny load will cause buckling
L =10 feet vs. L = 1000 feet:
Pcrit1000/Pcrit10 = 0.0001

*Buckling under hydrostatic Pressure



Pipe in Horizontal Pipe Buckling Diagram
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Fig. 1—Postbuckled configuration of pipe in a horizontal hole.




Far End vs. Input Load with Buckling

FAR END LOAD VS NEAR END LOAD
(WITH VIBRATORS)
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LENGTH CHANGE (in)
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‘ Buckling Length: Fiberglass vs. Steel

DeepStar Coiled Tubing Buckling Ext. Fluid = water
Int. Fluid = water
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Impact

Dynamic loading

o Impact — Chapter 5

o Fatigue — Chapter 7

Shock loading = sudden loading
Examples?

3 categories

o Rapidly moving loads of constant magnitude
Driving over a bridge .

o Suddenly applied loads Increas_lng
Explosion, combustion Severity

o Direct impact
Pile driver, jack hammer, auto crash
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Impact, cont.

It is difficult to define the time rates of load application
Leads to use of empirically determined stress impact factors
If T Is time constant of the system, where

T=27z\/E
K

o We can define the load type by the time required to apply the
load (t,, = time required to apply the load)

Static ty >37
“Gray area” ET <ty <3r

Dynamic t, <=t



Stress and deflection due to impact

W — freely falling mass

k — structure with stiffness (usually large)
Assumptions

o Mass of structure is negligible

o Deflections within the mass are negligible

o Damping is negligible

Equations are only a GUIDE

h is height of freely falling mass before its release
o is the amount of deflection of the spring/structure
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Impact Assumptions

278 Chapter 7 m Impact

(a)

FiGure 7.3

Impact load applied to elastic sir

Guide rod Elastic-strain energy stored
Force in structure = -%F,S
£
/ Work of falling weight = W(h + 8)

w ]
f asf = h —_—
3 Deflection

(b) (c)

ucture by falling weight: (a) initial position; (b) position at instant of maximum de-

flection; (c) force—deﬂection-energy relationships.

1.

i

The first assumption implies that the dynamic deflection curve (e,
the instantaneous deflections resulting from impact) is identical to that
caused by the static application of the same load, multiplied by an
impact factor. In reality, the dynamic deflection curve inevitably in-
volves points of higher local strain (hence, higher local stress) than
does the static curve.

Some deflection must inevitably occur within the impacting mass itself.
To the extent that it does, a portion of the energy is absorbed within
the mass, thereby causing the stresses and deflections in the structure
to be a little lower than the calculated values.

Any actual case involves some (though perhaps very little) friction
damping in the form of windage, rubbing of the mass on the guide
rod and end of the spring (in Figure 7.3), and internal friction within
the body of the deflecting structure. This damping can cause the actual
stresses and deflections to be significantly less than those calculated
from the idealized case.
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Figure 7.3 Impact load applied to elastic structure by fall-
ing weight: (a) initial position; (b) position at instant of
maximum deflection; (¢) force—deflection-energy relation-
ships.




Energy balance 0

F. Is the equivalent static force
necessary to create an amount of
deflection equal to 6

Y% because spring takes load gradually
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Impact, cont.

Sometimes we know velocity at impact rather than
the height of the fall

An energy balance gives:

vZ =2gh

0=0,1+ |1+

" 9o,
F.=W|1+ [1+

" 9s




‘ Pinger Pulse Setup
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‘ Pinger

FIGURE 4: PINGER DESIGN
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Pressure Pulse in Small Diameter Tubing

FIGURE 8:CLOSED END TEST WITH SEALED SYSTEM
(NEAR AND FAR TRANSDUCERS)
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1500 Foot Pulse Test
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